ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM I MTech I Semester (Common to CST & CST with Big Data Analytics wef 2017-18) MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE MODEL QUESTION PAPER

Time	: 3hrs.	Max. Marks: 75
	SECTION-A (4 X 15 = 60 M) Answer ALL Questions	
1.	a) Discuss primitive recursive functions with an example?	15M
	b) Statements and applications of Euler's and Fermat's Theorems?	15M
2.	a) Define DFA and NFA with examples. Differentiate them?	7 M
	b) Design a DFA which accepts Even number of 0's and 1's?	8M
	c) State and prove equivalence of NFA and DFA?	15M
3.	a) State and prove pumping lemma for CFL?	15M
	b) Design a PDA for the language $L = \{WW^R/W \text{ in } (a,b)^*\}$?	15M
4.	a) Explain techniques for construction of Turing machines? Or	15M
	b) Briefly discuss different grammars with examples?	15M

SECTION- B (5×3=15M) Answer any FIVE Questions

5. Write a short note on

- a) Function and relation
- **b**) Alphabet and string
- c) Regular expressions
- d) Context free languages
- e) Non deterministic push down automata
- **f**) Turing machines
- g) Undecidability of PCP
- h) Chomsky hierarchy

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM I MTech I Semester (Common to CST & CST with Big Data Analytics wef 2017-18) DATA STRUCTURES AND ALGORITHMS MODEL QUESTION PAPER

Time: 3hrs.	Max. Marks: 75
SECTION-A (4 X 15 = 60 M) Answer ALL Questions	
1. a) Explain the basics of time complexity estimates with an example Or	. 15M
b) Explain quick sort analysis to find average, worst and best cases time complexity.	of 15M
2. a) Define ADT. Explain implementation of double linked list. Or	15M
b) Define Binary Search Tree .Explain the implementation of AVL	Trees. 15M
3. a) Explain the Collision Resolution Techniques with examples. Or	15M
b) Implement Insertion Sort.	7M
c) Explain Heap Sort with an Example.	8M
4. a) Explain the Topological Sort with an Example.	8 M
b) Explain the shortest-path algorithm with an Example.	7M
c) Explain the find and union algorithms of Dynamic sets with Exa	mples. 8M
d) Explain union by rank algorithm analysis with an example.	7M

SECTION- B (5×3=15M) Answer any FIVE Questions

5. Write a short note on

- a) Applications of stack.
- **b**) Explain the splay trees with an example.
- c) Explain Hash-Function with Examples.
- d) Explain Network Flow Problem.
- e) Applications of DFS with an example.
- f) Explain NP- Complete problem.
- g) Explain minimum spanning tree algorithm with an example.
- h) Explain Representation of Queues.

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM I MTech I Semester (Common to CST & CST with Big Data Analytics wef 2017-18) DATABASE MANAGEMENT SYSTEMS MODEL QUESTION PAPER

Tin	ie: 3nrs.	Max. Marks: 75
	SECTION-A (4 X 15 = 60 M)	
	Answer ALL Questions	
1.	a) Explain Entity Relationship model with an example?	15M
	b) Explain how normalization and schema refinement?	15M
2.	a) Explain B+ tree index structure and various operations.	15M
	b) Explain static and dynamic hashing techniques?	15M
3.	a) Explain Query processing and Optimization?	15M
	b) What is Concurrency control? Explain.	15M
4.	a) Differentiate interquery and intraquery parallelism.	15M
	Or b) Explain different Database system architectures?	15M

SECTION- B (5×3=15M) Answer any FIVE Questions

5. Write a short note on

a) Suppose that we decompose the schema R=(A,B,C,D,E) into (A,B,C) and (A,D,E). show that this decomposition is lossless if the FDs A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A holds.

b) Write SQL queries for grant and revoke operations.

c) XML representation of data.

d) Write a servelet that authenticates a user based on user names and passwords stored I database relation and sets a session variable called userid after authentication.

e) Write a short notes on transaction states.

f) Consider the relations r1(A,B,C), r2(C,D,E) and r3(E,F), with primary keys A,C, and E respectively. Assume that r1 has 1000 tuples, r2 has 1500 tuples and r3 has 750 tuples. Estimate the size of r1 X r2 X r3 ?

g) Write a short notes on data replication and fragmentation.

h) Describe a good way to parallelise aggregation by the count operation.

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM I MTech I Semester (Common to CST & CST with Big Data Analytics wef 2017-18) COMPUTER ORGANIZATION AND ARCHITECTURE MODEL QUESTION PAPER

Tin	ne: 3hrs.	Max. Marks: 75
	SECTION-A ($4 \times 15 = 60 \text{ M}$)	
	Answer ALL Questions	
1.	a) Explain arithmetic micro operations	5M
	b) Write about bus and memory transfers	5M
	c) Explain design of basic computer.	5M
	Or	
	d) Explain register transfer language	5M
	e) Explain input-out interrupts.	10M
2.	a) Explain design of control unit	8 M
	c) Explain various types of addressing modes	7M
	Or	
	d) Write notes on stack organization	5M
	e) Explain data transfer and manipulation	10M
3.	a) Explain direct memory access	5M
	c) Explain cache memory and virtual memory	10M
	Or	
	d) Explain modes of transfer	5M
	e) Explain memory hierarchy	5M
	f) Write about auxiliary memory	5M
4.	a) Explain evolution of computer system	8 M
	b) Explain parallel computer structures	7M
	Or	
	c) Explain parallelism in uni-processor system	8 M
	d) Explain architectural classification schemes	7M

SECTION- B (5×3=15M) Answer any FIVE Questions

5. Write a short note on

- a) Logic Micro Operation
- **b**) Instruction Cycle
- c) Timing & Control
- d) Addressing sequencing
- e) I/O Interface
- **f**) Associative memory
- g) Computer Instructions
- **h**) Microprogram with examples

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM I MTech I Semester (Common to CST & CST with Big Data Analytics wef 2017-18) ADVANCED OPERATING SYSTEMS MODEL QUESTION PAPER Times 2hm

Tin	ne: 3hrs. Max. Ma	rks: 75
	SECTION-A $(4 \times 15 = 60 \text{ M})$	
	Answer ALL Questions	
1.	a) Illustrate the role of middleware in a distributed system?	8M
	b) Briefly discuss about Hybrid Architectures in a distributed system Or	7M
	c) What is Distributed Operating Systems? Explain the Application Layers	
	involved In Distributed OS and its architecture	8M
	d) Describe the goals of Distributed Systems	7M
2.	a) Discuss about thread implementation and Illustrate threads in Distributed	
	systems	15M
	Or	
	b) Briefly explain different code migration approaches.	8M
	c) Discuss about Software agents in Distributed Systems	7M
3.	a) Compare Static versus Dynamic method invocation.	8M
	b) What is RPC and define RPC operations.	7M
	Or	
	c) Discuss about Bekely Sockets and Message queuing model	8M
	d) Briefly explain middleware protocols.	7M
4.	a) What is meant by fault tolerance and discuss failure models	15M
	Or	
	b) With suitable examples explain in brief about Lamports logical clock	8M
	c) Compare Centralized algorithm and Distributed algorithm	7M
	SECTION- B (5×3=15M)	
5	Write a short note on	
5.	a) Homogeneous and beterogeneous multi computer systems	
	b) Decentralized Algorithm	
	c) Server Clusters	
	d) Physical Clocks	
	$\mathbf{u} = 1 + 1$	

e) Deadlocks

f) Agent Technology

g) Token ring algorithm

h) Failure Masking

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM I MTech I Semester (Common to CST & CST with Big Data Analytics wef 2017-18) COMPUTER NETWORKS MODEL QUESTION PAPER

Tim	le: 3hrs. Max. Mar	ks: 75
	SECTION-A $(4 \times 15 = 60 \text{ M})$	
	Answer ALL Questions	
1.	a) Write a brief history of OSI Reference Model	15M
	Or	
	b) Write about different kinds of switching techniques	15M
2.	a) Explain Various Sliding window Protocols	15M
	Or	
	b) Explain Leaky Bucket Algorithm	15M
3.	a) Explain about Packet Fragmentation	15M
	Or	
	b) Explain TCP Protocol	15M
4.	a) Write about the learning bridges, spanning tree bridges	15M
	Or	
	b) Briefly discuss about Mobile Adhoc Networks and Virtual Private Networks	15M

SECTION- B (5×3=15M) Answer any FIVE Questions

5.Write a short note on

- **a**) Write about various kinds of Networks
- b) Briefly explain different types of Multiplexing Techniques
- c) Explain shortest path routing.
- d) Explain various types of Error correction Techniques
- e) Briefly explain IPv4 Protocol Header format
- f) Write the difference between TCP and UDP
- g) Explain DNS, DHCP, SNMP and ICMP.
- h) Explain about wireless access points, transceivers.